Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
BMC Endocr Disord ; 24(1): 47, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622573

RESUMO

BACKGROUND: Familial chylomicronemia syndrome (FCS) is a rare monogenic form of severe hypertriglyceridemia, caused by mutations in genes involved in triglyceride metabolism. Herein, we report the case of a Korean family with familial chylomicronemia syndrome caused by compound heterozygous deletions of glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1). CASE PRESENTATION: A 4-year-old boy was referred for the evaluation of severe hypertriglyceridemia (3734 mg/dL) that was incidentally detected 4 months prior. His elder brother also demonstrated an elevated triglyceride level of 2133 mg/dL at the age of 9. Lipoprotein electrophoresis revealed the presence of chylomicrons, an increase in the proportion of pre-beta lipoproteins, and low serum lipoprotein lipase levels. The patient's parents and first elder brother had stable lipid profiles. For suspected FCS, genetic testing was performed using the next-generation sequencing-based analysis of 31 lipid metabolism-associated genes, which revealed no pathogenic variants. However, copy number variant screening using sequencing depth information suggested large heterozygous deletion encompassing all the coding exons of GPIHBP1. A real-time quantitative polymerase chain reaction was performed to validate the deletion site. The results showed that the siblings had two heterozygous copy number variants consisting of the whole gene and an exon 4 deletion, each inherited from their parents. During the follow-up period of 17 months, the patient did not develop pancreatitis, following dietary intervention. CONCLUSION: These siblings' case of familial chylomicronemia syndrome caused by rare GPIHBP1 deletions highlight the implementation of copy number variants-beyond next-generation sequencing-as an important consideration in diagnosis. Accurate genetic diagnosis is necessary to establish the etiology of severe hypertriglyceridemia, which increases the risk of pancreatitis.


Assuntos
Hiperlipoproteinemia Tipo I , Hipertrigliceridemia , Pancreatite , Receptores de Lipoproteínas , Pré-Escolar , Humanos , Masculino , Hiperlipoproteinemia Tipo I/diagnóstico , Hiperlipoproteinemia Tipo I/genética , Hipertrigliceridemia/etiologia , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/metabolismo , Irmãos , Triglicerídeos , Criança
2.
J Atheroscler Thromb ; 30(1): 100-104, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35185060

RESUMO

Primary hyperchylomicronemia is characterized by marked hypertriglyceridemia exceeding 1,000 mg/dL. It is caused by dysfunctional mutations in specific genes, namely those for lipoprotein lipase (LPL), glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1), apolipoprotein C2 (ApoC-II), lipase maturation factor 1 (LMF1), or apolipoprotein A5 (ApoA-V). Importantly, antibodies against LPL or GPIHBP1 have also been reported to induce autoimmune hyperchylomicronemia. The patient was a 46-year-old man diagnosed with immune thrombocytopenia (ITP) at 41 years. At the time, he was administered prednisolone (PSL) and eltrombopag, a thrombopoietin receptor agonist. At 44 years, he suffered from acute myocardial infarction, and PSL was discontinued to avoid enhancing atherogenic risks. He was maintained on eltrombopag monotherapy. After discontinuing PSL, marked hypertriglyceridemia (>3,000 mg/dL) was observed, which did not improve even after a few years of pemafibrate therapy. Upon referral to our clinic, the triglyceride (TG) level was 2,251 mg/dL, ApoC-II was 19.8 mg/dL, LPL was 11.1 ng/mL (0.02-1.5 ng/mL), GPIHBP1 was 47.7 pg/mL (740.0-1,014.0 pg/mL), and anti-GPIHBP1 antibody was detected. The patient was diagnosed to have anti-GPIHBP1 antibody-positive autoimmune hyperchylomicronemia. He was administered PSL 15 mg/day, and TG levels were controlled at approximately 200 mg/dL. Recent studies have reported that patients with anti-GPIHBP1 antibody-induced autoimmune hyperchylomicronemia had concomitant rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, Hashimoto's disease, and Graves' disease. We report a rare case of anti-GPIHBP1 antibody-positive autoimmune hyperchylomicronemia with concomitant ITP, which became apparent when PSL was discontinued due to the onset of steroid-induced acute myocardial infarction.


Assuntos
Hipertrigliceridemia , Púrpura Trombocitopênica Idiopática , Receptores de Lipoproteínas , Masculino , Humanos , Pessoa de Meia-Idade , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Lipase Lipoproteica/metabolismo , Apolipoproteína C-II/genética , Apolipoproteína C-II/metabolismo , Hipertrigliceridemia/genética
3.
J Biol Chem ; 298(9): 102333, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35926711

RESUMO

During reverse cholesterol transport, high-density lipoprotein (HDL) carries excess cholesterol from peripheral cells to the liver for excretion in bile. The first and last steps of this pathway involve the HDL receptor, scavenger receptor BI (SR-BI). While the mechanism of SR-BI-mediated cholesterol transport has not yet been established, it has long been suspected that cholesterol traverses through a hydrophobic tunnel in SR-BI's extracellular domain. Confirmation of a hydrophobic tunnel is hindered by the lack of a full-length SR-BI structure. Part of SR-BI's structure has been resolved, encompassing residues 405 to 475, which includes the C-terminal transmembrane domain and its adjacent extracellular region. Within the extracellular segment is an amphipathic helix (residues 427-436, referred to as AH(427-436)) that showed increased protection from solvent in NMR-based studies. Homology models predict that hydrophobic residues in AH(427-436) line a core cavity in SR-BI's extracellular region that may facilitate cholesterol transport. Therefore, we hypothesized that hydrophobic residues in AH(427-436) are required for HDL cholesterol transport. Here, we tested this hypothesis by mutating individual residues along AH(427-436) to a charged residue (aspartic acid), transiently transfecting COS-7 cells with plasmids encoding wild-type and mutant SR-BI, and performing functional analyses. We found that mutating hydrophobic, but not hydrophilic, residues in AH(427-436) impaired SR-BI bidirectional cholesterol transport. Mutating phenylalanine-430 was particularly detrimental to SR-BI's functions, suggesting that this residue may facilitate important interactions for cholesterol delivery within the hydrophobic tunnel. Our results support the hypothesis that a hydrophobic tunnel within SR-BI mediates cholesterol transport.


Assuntos
HDL-Colesterol , Lipoproteínas HDL , Receptores de Lipoproteínas , Receptores Depuradores Classe B , Ácido Aspártico/química , Ácido Aspártico/genética , Transporte Biológico , Antígenos CD36/química , HDL-Colesterol/química , HDL-Colesterol/metabolismo , Lipoproteínas HDL/química , Lipoproteínas HDL/genética , Fenilalanina/química , Fenilalanina/genética , Conformação Proteica em alfa-Hélice , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/genética , Receptores Depuradores Classe B/química , Receptores Depuradores Classe B/genética , Solventes
4.
J Clin Invest ; 132(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35229724

RESUMO

GPIHBP1, an endothelial cell (EC) protein, captures lipoprotein lipase (LPL) within the interstitial spaces (where it is secreted by myocytes and adipocytes) and transports it across ECs to its site of action in the capillary lumen. GPIHBP1's 3-fingered LU domain is required for LPL binding, but the function of its acidic domain (AD) has remained unclear. We created mutant mice lacking the AD and found severe hypertriglyceridemia. As expected, the mutant GPIHBP1 retained the capacity to bind LPL. Unexpectedly, however, most of the GPIHBP1 and LPL in the mutant mice was located on the abluminal surface of ECs (explaining the hypertriglyceridemia). The GPIHBP1-bound LPL was trapped on the abluminal surface of ECs by electrostatic interactions between the large basic patch on the surface of LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the surface of ECs. GPIHBP1 trafficking across ECs in the mutant mice was normalized by disrupting LPL-HSPG electrostatic interactions with either heparin or an AD peptide. Thus, GPIHBP1's AD plays a crucial function in plasma triglyceride metabolism; it sheathes LPL's basic patch on the abluminal surface of ECs, thereby preventing LPL-HSPG interactions and freeing GPIHBP1-LPL complexes to move across ECs to the capillary lumen.


Assuntos
Lipase Lipoproteica , Receptores de Lipoproteínas , Animais , Capilares/metabolismo , Células Endoteliais/metabolismo , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Camundongos , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Eletricidade Estática
5.
J Biol Chem ; 295(13): 4289-4302, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32079676

RESUMO

Tricellular tight junctions (tTJs) create paracellular barriers at tricellular contacts (TCs), where the vertices of three polygonal epithelial cells meet. tTJs are marked by the enrichment of two types of membrane proteins, tricellulin and angulin family proteins. However, how TC geometry is recognized for tTJ formation remains unknown. In the present study, we examined the molecular mechanism for the assembly of angulin-1 at the TCs. We found that clusters of cysteine residues in the juxtamembrane region within the cytoplasmic domain of angulin-1 are highly palmitoylated. Mutagenesis analyses of the cysteine residues in this region revealed that palmitoylation is essential for localization of angulin-1 at TCs. Consistently, suppression of Asp-His-His-Cys motif-containing palmitoyltransferases expressed in EpH4 cells significantly impaired the TC localization of angulin-1. Cholesterol depletion from the plasma membrane of cultured epithelial cells hampered the localization of angulin-1 at TCs, suggesting the existence of a lipid membrane microdomain at TCs that attracts highly palmitoylated angulin-1. Furthermore, the extracellular domain of angulin-1 was also required for its TC localization, irrespective of the intracellular palmitoylation. Taken together, our findings suggest that both angulin-1's extracellular domain and palmitoylation of its cytoplasmic region are required for its assembly at TCs.


Assuntos
Colesterol/genética , Lipoilação/genética , Microdomínios da Membrana/genética , Receptores de Lipoproteínas/genética , Comunicação Celular/genética , Colesterol/metabolismo , Cisteína/química , Cisteína/genética , Células Epiteliais/metabolismo , Humanos , Junções Intercelulares/genética , Proteína 2 com Domínio MARVEL , Microdomínios da Membrana/química , Domínios Proteicos/genética , Processamento de Proteína Pós-Traducional/genética , Receptores de Lipoproteínas/química , Junções Íntimas/genética , Junções Íntimas/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(8): 4337-4346, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32034094

RESUMO

The binding of lipoprotein lipase (LPL) to GPIHBP1 focuses the intravascular hydrolysis of triglyceride-rich lipoproteins on the surface of capillary endothelial cells. This process provides essential lipid nutrients for vital tissues (e.g., heart, skeletal muscle, and adipose tissue). Deficiencies in either LPL or GPIHBP1 impair triglyceride hydrolysis, resulting in severe hypertriglyceridemia. The activity of LPL in tissues is regulated by angiopoietin-like proteins 3, 4, and 8 (ANGPTL). Dogma has held that these ANGPTLs inactivate LPL by converting LPL homodimers into monomers, rendering them highly susceptible to spontaneous unfolding and loss of enzymatic activity. Here, we show that binding of an LPL-specific monoclonal antibody (5D2) to the tryptophan-rich lipid-binding loop in the carboxyl terminus of LPL prevents homodimer formation and forces LPL into a monomeric state. Of note, 5D2-bound LPL monomers are as stable as LPL homodimers (i.e., they are not more prone to unfolding), but they remain highly susceptible to ANGPTL4-catalyzed unfolding and inactivation. Binding of GPIHBP1 to LPL alone or to 5D2-bound LPL counteracts ANGPTL4-mediated unfolding of LPL. In conclusion, ANGPTL4-mediated inactivation of LPL, accomplished by catalyzing the unfolding of LPL, does not require the conversion of LPL homodimers into monomers. Thus, our findings necessitate changes to long-standing dogma on mechanisms for LPL inactivation by ANGPTL proteins. At the same time, our findings align well with insights into LPL function from the recent crystal structure of the LPL•GPIHBP1 complex.


Assuntos
Proteína 4 Semelhante a Angiopoietina/metabolismo , Lipase Lipoproteica/química , Triglicerídeos/sangue , Motivos de Aminoácidos , Proteína 4 Semelhante a Angiopoietina/genética , Animais , Anticorpos Monoclonais/metabolismo , Dimerização , Humanos , Hipertrigliceridemia/enzimologia , Hipertrigliceridemia/genética , Hipertrigliceridemia/metabolismo , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Desdobramento de Proteína , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo
7.
J Biol Chem ; 295(10): 2900-2912, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31645434

RESUMO

Lipoprotein lipase (LPL) is central to triglyceride metabolism. Severely compromised LPL activity causes familial chylomicronemia syndrome (FCS), which is associated with very high plasma triglyceride levels and increased risk of life-threatening pancreatitis. Currently, no approved pharmacological intervention can acutely lower plasma triglycerides in FCS. Low yield, high aggregation, and poor stability of recombinant LPL have thus far prevented development of enzyme replacement therapy. Recently, we showed that LPL monomers form 1:1 complexes with the LPL transporter glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) and solved the structure of the complex. In the present work, we further characterized the monomeric LPL/GPIHBP1 complex and its derivative, the LPL-GPIHBP1 fusion protein, with the goal of contributing to the development of an LPL enzyme replacement therapy. Fusion of LPL to GPIHBP1 increased yields of recombinant LPL, prevented LPL aggregation, stabilized LPL against spontaneous inactivation, and made it resistant to inactivation by the LPL antagonists angiopoietin-like protein 3 (ANGPTL3) or ANGPTL4. The high stability of the fusion protein enabled us to identify LPL amino acids that interact with ANGPTL4. Additionally, the LPL-GPIHBP1 fusion protein exhibited high enzyme activity in in vitro assays. Importantly, both intravenous and subcutaneous administrations of the fusion protein lowered triglycerides in several mouse strains without causing adverse effects. These results indicate that the LPL-GPIHBP1 fusion protein has potential for use as a therapeutic for managing FCS.


Assuntos
Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/metabolismo , Triglicerídeos/sangue , Sequência de Aminoácidos , Proteína 3 Semelhante a Angiopoietina , Proteína 4 Semelhante a Angiopoietina/química , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/química , Proteínas Semelhantes a Angiopoietina/metabolismo , Animais , Sítios de Ligação , Modelos Animais de Doenças , Terapia de Reposição de Enzimas , Humanos , Hiperlipoproteinemia Tipo I/tratamento farmacológico , Hiperlipoproteinemia Tipo I/patologia , Infusões Subcutâneas , Lipase Lipoproteica/química , Lipase Lipoproteica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Agregados Proteicos/efeitos dos fármacos , Estabilidade Proteica , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico
8.
Proc Natl Acad Sci U S A ; 116(21): 10360-10365, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31072929

RESUMO

Lipoprotein lipase (LPL) plays a central role in triglyceride (TG) metabolism. By catalyzing the hydrolysis of TGs present in TG-rich lipoproteins (TRLs), LPL facilitates TG utilization and regulates circulating TG and TRL concentrations. Until very recently, structural information for LPL was limited to homology models, presumably due to the propensity of LPL to unfold and aggregate. By coexpressing LPL with a soluble variant of its accessory protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) and with its chaperone protein lipase maturation factor 1 (LMF1), we obtained a stable and homogenous LPL/GPIHBP1 complex that was suitable for structure determination. We report here X-ray crystal structures of human LPL in complex with human GPIHBP1 at 2.5-3.0 Å resolution, including a structure with a novel inhibitor bound to LPL. Binding of the inhibitor resulted in ordering of the LPL lid and lipid-binding regions and thus enabled determination of the first crystal structure of LPL that includes these important regions of the protein. It was assumed for many years that LPL was only active as a homodimer. The structures and additional biochemical data reported here are consistent with a new report that LPL, in complex with GPIHBP1, can be active as a monomeric 1:1 complex. The crystal structures illuminate the structural basis for LPL-mediated TRL lipolysis as well as LPL stabilization and transport by GPIHBP1.


Assuntos
Lipase Lipoproteica/química , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/metabolismo , Células HEK293 , Humanos , Hidrólise , Metabolismo dos Lipídeos/fisiologia , Lipólise/fisiologia , Lipoproteínas/metabolismo , Triglicerídeos/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(13): 6319-6328, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850549

RESUMO

Lipoprotein lipase (LPL), the enzyme that hydrolyzes triglycerides in plasma lipoproteins, is assumed to be active only as a homodimer. In support of this idea, several groups have reported that the size of LPL, as measured by density gradient ultracentrifugation, is ∼110 kDa, twice the size of LPL monomers (∼55 kDa). Of note, however, in those studies the LPL had been incubated with heparin, a polyanionic substance that binds and stabilizes LPL. Here we revisited the assumption that LPL is active only as a homodimer. When freshly secreted human LPL (or purified preparations of LPL) was subjected to density gradient ultracentrifugation (in the absence of heparin), LPL mass and activity peaks exhibited the size expected of monomers (near the 66-kDa albumin standard). GPIHBP1-bound LPL also exhibited the size expected for a monomer. In the presence of heparin, LPL size increased, overlapping with a 97.2-kDa standard. We also used density gradient ultracentrifugation to characterize the LPL within the high-salt and low-salt peaks from a heparin-Sepharose column. The catalytically active LPL within the high-salt peak exhibited the size of monomers, whereas most of the inactive LPL in the low-salt peak was at the bottom of the tube (in aggregates). Consistent with those findings, the LPL in the low-salt peak, but not that in the high-salt peak, was easily detectable with single mAb sandwich ELISAs, in which LPL is captured and detected with the same antibody. We conclude that catalytically active LPL can exist in a monomeric state.


Assuntos
Lipase Lipoproteica/química , Lipase Lipoproteica/isolamento & purificação , Animais , Células CHO , Bovinos , Centrifugação com Gradiente de Concentração/métodos , Cromatografia de Afinidade , Cromatografia em Agarose , Cricetulus , Epitopos , Heparina , Humanos , Lipase Lipoproteica/sangue , Receptores de Lipoproteínas/sangue , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/isolamento & purificação , Sefarose/análogos & derivados , Triglicerídeos/metabolismo , Ultracentrifugação
10.
Mol Med Rep ; 18(6): 4904-4912, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30272292

RESUMO

Hypothyroidism is a disease with a genetic component. The present study aimed to identify the potential causative gene mutation in a family with hypothyroidism and to investigate its potential pathology. DNA was extracted from the affected individual and his parents, maternal aunt and maternal grandmother. Whole exome sequencing was used to examine their exomes. The potential causative genes that may have an autosomal dominant mode of inheritance were selected after variant calling and filtering. Bioinformatics analysis was utilized to predict the deleteriousness of the identified variants, and multiple sequence alignment and conserved protein domain analyses were performed using online software. Finally, Sanger sequencing was used to validate the identified variants. In the present study, a total of 50 variants were screened based on the autosomal dominant mode of inheritance. Two variants, the fatty acid synthase (FASN) and apolipoprotein B receptor (APOBR) genes, were further analyzed, as they were highly associated with hypothyroidism. Genotyping results revealed that two mutations, c.G7192T (p.A2398S) in the FASN gene and c.C1883G (p.T628R) in the APOBR gene, were fully co­segregated with established hypothyroidism phenotypes in the family. These mutations were located in the conserved α/ß­hydrolase fold and Na+/Ca2+ exchanger superfamily domain of FASN and APOBR, respectively. In conclusion, the present study demonstrated that the FASN c.G7192T and APOBR c.C1883G mutations may be the potential causative variants in this Chinese hypothyroidism pedigree.


Assuntos
Ácido Graxo Sintases/genética , Hipotireoidismo/genética , Mutação , Receptores de Lipoproteínas/genética , Adulto , Idoso , Alelos , Sequência de Aminoácidos , Biomarcadores , Pré-Escolar , Biologia Computacional/métodos , Análise Mutacional de DNA , Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Feminino , Genótipo , Humanos , Hipotireoidismo/metabolismo , Masculino , Pessoa de Meia-Idade , Linhagem , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/metabolismo , Sequenciamento do Exoma , Adulto Jovem
11.
Proc Natl Acad Sci U S A ; 115(26): E6020-E6029, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29899144

RESUMO

The intravascular processing of triglyceride-rich lipoproteins depends on lipoprotein lipase (LPL) and GPIHBP1, a membrane protein of endothelial cells that binds LPL within the subendothelial spaces and shuttles it to the capillary lumen. In the absence of GPIHBP1, LPL remains mislocalized within the subendothelial spaces, causing severe hypertriglyceridemia (chylomicronemia). The N-terminal domain of GPIHBP1, an intrinsically disordered region (IDR) rich in acidic residues, is important for stabilizing LPL's catalytic domain against spontaneous and ANGPTL4-catalyzed unfolding. Here, we define several important properties of GPIHBP1's IDR. First, a conserved tyrosine in the middle of the IDR is posttranslationally modified by O-sulfation; this modification increases both the affinity of GPIHBP1-LPL interactions and the ability of GPIHBP1 to protect LPL against ANGPTL4-catalyzed unfolding. Second, the acidic IDR of GPIHBP1 increases the probability of a GPIHBP1-LPL encounter via electrostatic steering, increasing the association rate constant (kon) for LPL binding by >250-fold. Third, we show that LPL accumulates near capillary endothelial cells even in the absence of GPIHBP1. In wild-type mice, we expect that the accumulation of LPL in close proximity to capillaries would increase interactions with GPIHBP1. Fourth, we found that GPIHBP1's IDR is not a key factor in the pathogenicity of chylomicronemia in patients with the GPIHBP1 autoimmune syndrome. Finally, based on biophysical studies, we propose that the negatively charged IDR of GPIHBP1 traverses a vast space, facilitating capture of LPL by capillary endothelial cells and simultaneously contributing to GPIHBP1's ability to preserve LPL structure and activity.


Assuntos
Células Endoteliais/metabolismo , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/metabolismo , Proteína 4 Semelhante a Angiopoietina/química , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Animais , Células Endoteliais/patologia , Humanos , Hiperlipoproteinemia Tipo I/genética , Hiperlipoproteinemia Tipo I/metabolismo , Hiperlipoproteinemia Tipo I/patologia , Lipase Lipoproteica/química , Lipase Lipoproteica/genética , Camundongos , Ligação Proteica , Domínios Proteicos , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/genética , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
12.
J Lipid Res ; 58(7): 1453-1461, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28476858

RESUMO

Mutation of conserved cysteines in proteins of the Ly6 family cause human disease-chylomicronemia in the case of glycosylphosphatidylinositol-anchored HDL binding protein 1 (GPIHBP1) and paroxysmal nocturnal hemoglobinuria in the case of CD59. A mutation in a conserved cysteine in CD59 prevented the protein from reaching the surface of blood cells. In contrast, mutation of conserved cysteines in human GPIHBP1 had little effect on GPIHBP1 trafficking to the surface of cultured CHO cells. The latter findings were somewhat surprising and raised questions about whether CHO cell studies accurately model the fate of mutant GPIHBP1 proteins in vivo. To explore this concern, we created mice harboring a GPIHBP1 cysteine mutation (p.C63Y). The p.C63Y mutation abolished the ability of mouse GPIHBP1 to bind LPL, resulting in severe chylomicronemia. The mutant GPIHBP1 was detectable by immunohistochemistry on the surface of endothelial cells, but the level of expression was ∼70% lower than in WT mice. The mutant GPIHBP1 protein in mouse tissues was predominantly monomeric. We conclude that mutation of a conserved cysteine in GPIHBP1 abolishes the ability of GPIHBP1 to bind LPL, resulting in mislocalization of LPL and severe chylomicronemia. The mutation reduced but did not eliminate GPIHBP1 on the surface of endothelial cells in vivo.


Assuntos
Sequência Conservada , Cisteína , Lipase Lipoproteica/metabolismo , Mutação , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Feminino , Humanos , Lipase Lipoproteica/genética , Camundongos , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Lipoproteínas/genética , Triglicerídeos/sangue
13.
Biochemistry ; 56(3): 525-533, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-27984852

RESUMO

Lipoprotein lipase (LPL) is responsible for the hydrolysis of triglycerides from circulating lipoproteins. Whereas most identified mutations in the LPL gene are deleterious, one mutation, LPLS447X, causes a gain of function. This mutation truncates two amino acids from LPL's C-terminus. Carriers of LPLS447X have decreased VLDL levels and increased HDL levels, a cardioprotective phenotype. LPLS447X is used in Alipogene tiparvovec, the gene therapy product for individuals with familial LPL deficiency. It is unclear why LPLS447X results in a serum lipid profile more favorable than that of LPL. In vitro reports vary as to whether LPLS447X is more active than LPL. We report a comprehensive, biochemical comparison of purified LPLS447X and LPL dimers. We found no difference in specific activity on synthetic and natural substrates. We also did not observe a difference in the Ki for ANGPTL4 inhibition of LPLS447X relative to that of LPL. Finally, we analyzed LPL-mediated uptake of fluorescently labeled lipoprotein particles and found that LPLS447X enhanced lipoprotein uptake to a greater degree than LPL did. An LPL structural model suggests that the LPLS447X truncation exposes residues implicated in LPL binding to uptake receptors.


Assuntos
HDL-Colesterol/química , LDL-Colesterol/química , Lipase Lipoproteica/química , Mutação , Receptores de Lipoproteínas/química , Triglicerídeos/química , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/química , Angiopoietinas/genética , Angiopoietinas/metabolismo , Animais , Transporte Biológico , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , VLDL-Colesterol/química , VLDL-Colesterol/metabolismo , Expressão Gênica , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/genética , Hiperlipidemias/patologia , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Serina/metabolismo , Especificidade por Substrato , Triglicerídeos/metabolismo
14.
J Clin Lipidol ; 10(4): 915-921.e4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27578123

RESUMO

BACKGROUND: Familial chylomicronemia is a recessive disorder that may be due to mutations in lipoprotein lipase (LPL) and in other proteins such as apolipoprotein C-II and apolipoprotein A-V (activators of LPL), GPIHBP1 (the molecular platform required for LPL activity on endothelial surface), and LMF1 (a factor required for intracellular formation of active LPL). METHODS: We sequenced the familial chylomicronemia candidate genes in 2 adult females presenting long-standing hypertriglyceridemia and a history of acute pancreatitis. RESULTS: Both probands had plasma triglyceride >10 mmol/L but no mutations in the LPL gene. The sequence of the other candidate genes showed that one patient was homozygous for a novel missense mutation p.(Cys83Arg), and the other was homozygous for a previously reported nonsense mutation p.(Cys 89*), respectively, in GPIHBP1. Family screening showed that the hypertriglyceridemic brother of the p.(Cys83Arg) homozygote was also homozygous for this mutation. He had no history of pancreatitis. The p.(Cys83Arg) heterozygous carriers had normal triglyceride levels. The substitution of a cysteine residue in the Ly6 domain of GPIHBP1 is predicted to abolish one of the disulfide bridges required to maintain the structure of GPIHBP1. The p.(Cys89*) mutation results in a truncated protein devoid of function. CONCLUSIONS: Both mutant GPIHBP1 proteins are expected to be incapable of transferring LPL from the subendothelial space to the endothelial surface.


Assuntos
Códon sem Sentido , Hiperlipoproteinemia Tipo I/genética , Mutação de Sentido Incorreto , Receptores de Lipoproteínas/genética , Adulto , Sequência de Bases , Feminino , Homozigoto , Humanos , Hiperlipoproteinemia Tipo I/diagnóstico , Achados Incidentais , Masculino , Pessoa de Meia-Idade , Linhagem , Domínios Proteicos , Receptores de Lipoproteínas/química
15.
J Lipid Res ; 57(10): 1889-1898, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27494936

RESUMO

LPL contains two principal domains: an amino-terminal catalytic domain (residues 1-297) and a carboxyl-terminal domain (residues 298-448) that is important for binding lipids and binding glycosylphosphatidylinositol-anchored high density lipoprotein binding protein 1 (GPIHBP1) (an endothelial cell protein that shuttles LPL to the capillary lumen). The LPL sequences required for GPIHBP1 binding have not been examined in detail, but one study suggested that sequences near LPL's carboxyl terminus (residues ∼403-438) were crucial. Here, we tested the ability of LPL-specific monoclonal antibodies (mAbs) to block the binding of LPL to GPIHBP1. One antibody, 88B8, abolished LPL binding to GPIHBP1. Consistent with those results, antibody 88B8 could not bind to GPIHBP1-bound LPL on cultured cells. Antibody 88B8 bound poorly to LPL proteins with amino acid substitutions that interfered with GPIHBP1 binding (e.g., C418Y, E421K). However, the sequences near LPL's carboxyl terminus (residues ∼403-438) were not sufficient for 88B8 binding; upstream sequences (residues 298-400) were also required. Additional studies showed that these same sequences are required for LPL binding to GPIHBP1. In conclusion, we identified an LPL mAb that binds to LPL's GPIHBP1-binding domain. The binding of both antibody 88B8 and GPIHBP1 to LPL depends on large segments of LPL's carboxyl-terminal domain.


Assuntos
Anticorpos Monoclonais Murinos/química , Lipase Lipoproteica/química , Receptores de Lipoproteínas/química , Substituição de Aminoácidos , Animais , Linhagem Celular , Drosophila melanogaster , Humanos , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , Domínios Proteicos , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo
16.
Elife ; 5: e12095, 2016 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-26725083

RESUMO

GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia.


Assuntos
Lipase Lipoproteica/metabolismo , Dobramento de Proteína , Receptores de Lipoproteínas/metabolismo , Animais , Domínio Catalítico , Linhagem Celular , Estabilidade Enzimática , Humanos , Cinética , Lipase Lipoproteica/química , Espectrometria de Massas , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Receptores de Lipoproteínas/química , Ressonância de Plasmônio de Superfície
17.
J Biol Chem ; 290(22): 13919-34, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25873395

RESUMO

GPIHBP1 is an endothelial membrane protein that transports lipoprotein lipase (LPL) from the subendothelial space to the luminal side of the capillary endothelium. Here, we provide evidence that two regions of GPIHBP1, the acidic N-terminal domain and the central Ly6 domain, interact with LPL as two distinct binding sites. This conclusion is based on comparative binding studies performed with a peptide corresponding to the N-terminal domain of GPIHBP1, the Ly6 domain of GPIHBP1, wild type GPIHBP1, and the Ly6 domain mutant GPIHBP1 Q114P. Although LPL and the N-terminal domain formed a tight but short lived complex, characterized by fast on- and off-rates, the complex between LPL and the Ly6 domain formed more slowly and persisted for a longer time. Unlike the interaction of LPL with the Ly6 domain, the interaction of LPL with the N-terminal domain was significantly weakened by salt. The Q114P mutant bound LPL similarly to the N-terminal domain of GPIHBP1. Heparin dissociated LPL from the N-terminal domain, and partially from wild type GPIHBP1, but was unable to elute the enzyme from the Ly6 domain. When LPL was in complex with the acidic peptide corresponding to the N-terminal domain of GPIHBP1, the enzyme retained its affinity for the Ly6 domain. Furthermore, LPL that was bound to the N-terminal domain interacted with lipoproteins, whereas LPL bound to the Ly6 domain did not. In summary, our data suggest that the two domains of GPIHBP1 interact independently with LPL and that the functionality of LPL depends on its localization on GPIHBP1.


Assuntos
Glicosilfosfatidilinositóis/química , Lipase Lipoproteica/química , Lipoproteínas/química , Receptores de Lipoproteínas/química , Animais , Anisotropia , Sítios de Ligação , Bovinos , Reagentes de Ligações Cruzadas/química , Endotélio Vascular/metabolismo , Epitopos/química , Corantes Fluorescentes/química , Heparina/química , Humanos , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Camundongos , Mutação , Peptídeos/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Ressonância de Plasmônio de Superfície
18.
Circ Res ; 116(4): 624-32, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25387803

RESUMO

RATIONALE: GPIHBP1, a GPI-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) in the subendothelial spaces and shuttles it to the capillary lumen. GPIHBP1 missense mutations that interfere with LPL binding cause familial chylomicronemia. OBJECTIVE: We sought to understand mechanisms by which GPIHBP1 mutations prevent LPL binding and lead to chylomicronemia. METHODS AND RESULTS: We expressed mutant forms of GPIHBP1 in Chinese hamster ovary cells, rat and human endothelial cells, and Drosophila S2 cells. In each expression system, mutation of cysteines in GPIHBP1's Ly6 domain (including mutants identified in patients with chylomicronemia) led to the formation of disulfide-linked dimers and multimers. GPIHBP1 dimerization/multimerization was not unique to cysteine mutations; mutations in other amino acid residues, including several associated with chylomicronemia, also led to protein dimerization/multimerization. The loss of GPIHBP1 monomers is relevant to the pathogenesis of chylomicronemia because only GPIHBP1 monomers-and not dimers or multimers-are capable of binding LPL. One GPIHBP1 mutant, GPIHBP1-W109S, had distinctive properties. GPIHBP1-W109S lacked the ability to bind LPL but had a reduced propensity for forming dimers or multimers, suggesting that W109 might play a more direct role in binding LPL. In support of that idea, replacing W109 with any of 8 other amino acids abolished LPL binding-and often did so without promoting the formation of dimers and multimers. CONCLUSIONS: Many amino acid substitutions in GPIHBP1's Ly6 domain that abolish LPL binding lead to protein dimerization/multimerization. Dimerization/multimerization is relevant to disease pathogenesis, given that only GPIHBP1 monomers are capable of binding LPL.


Assuntos
Hiperlipoproteinemia Tipo I/enzimologia , Lipase Lipoproteica/metabolismo , Mutação de Sentido Incorreto , Receptores de Lipoproteínas/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetulus , Cisteína , Drosophila/citologia , Drosophila/metabolismo , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Hiperlipoproteinemia Tipo I/genética , Modelos Moleculares , Fosfoinositídeo Fosfolipase C/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Ratos , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/genética , Transfecção
19.
J Lipid Res ; 55(11): 2287-95, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25217480

RESUMO

Transcripts encoding a novel member of the lipoprotein receptor superfamily, termed LDL receptor-related protein (Lrp)13, were sequenced from striped bass (Morone saxatilis) and white perch (Morone americana) ovaries. Receptor proteins were purified from perch ovary membranes by protein-affinity chromatography employing an immobilized mixture of vitellogenins Aa and Ab. RT-PCR revealed lrp13 to be predominantly expressed in striped bass ovary, and in situ hybridization detected lrp13 transcripts in the ooplasm of early secondary growth oocytes. Quantitative RT-PCR confirmed peak lrp13 expression in the ovary during early secondary growth. Quantitative mass spectrometry revealed peak Lrp13 protein levels in striped bass ovary during late-vitellogenesis, and immunohistochemistry localized Lrp13 to the oolemma and zona radiata of vitellogenic oocytes. Previously unreported orthologs of lrp13 were identified in genome sequences of fishes, chicken (Gallus gallus), mouse (Mus musculus), and dog (Canis lupus familiaris). Zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) lrp13 loci are discrete and share genomic synteny. The Lrp13 appears to function as a vitellogenin receptor and may be an important mediator of yolk formation in fishes and other oviparous vertebrates. The presence of lrp13 orthologs in mammals suggests that this lipoprotein receptor is widely distributed among vertebrates, where it may generally play a role in lipoprotein metabolism.


Assuntos
Bass , Proteínas de Peixes/metabolismo , Receptores de Lipoproteínas/metabolismo , Vitelogeninas/metabolismo , Animais , Clonagem Molecular , Proteínas de Peixes/química , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Humanos , Espaço Intracelular/metabolismo , Ligação Proteica , Transporte Proteico , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/genética
20.
Metabolism ; 63(7): 875-86, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24854385

RESUMO

Scavenger receptor class B type I (SR-BI), is a physiologically relevant HDL receptor that mediates selective uptake of lipoprotein (HDL)-derived cholesteryl ester (CE) in vitro and in vivo. Mammalian SR-BI is a 509-amino acid, ~82 kDa glycoprotein that contains N- and C-terminal cytoplasmic domains, two-transmembrane domains, as well as a large extracellular domain containing 5-6 cysteine residues and multiple sites for N-linked glycosylation. The size and structural characteristics of SR-BI, however, vary considerably among lower vertebrates and insects. Recently, significant progress has been made in understanding the molecular mechanisms involved in the posttranscriptional/posttranslational regulation of SR-BI in a tissue specific manner. The purpose of this review is to summarize the current body of knowledge about the events and molecules connected with the posttranscriptional/posttranslational regulation of SR-BI and to update the molecular and functional characteristics of the insect SR-BI orthologs.


Assuntos
Lipoproteínas HDL/metabolismo , Fígado/metabolismo , Receptores de Lipoproteínas/metabolismo , Receptores Depuradores Classe B/metabolismo , Animais , Transporte Biológico , Regulação da Expressão Gênica , Glicosilação , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lipoproteínas HDL/química , Lipoproteínas HDL/genética , Especificidade de Órgãos , Conformação Proteica , Processamento de Proteína Pós-Traducional , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/genética , Receptores Depuradores Classe B/química , Receptores Depuradores Classe B/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA